【协和医学杂志】乳腺癌骨转移研究进展——从基础到临床
时间:2023-08-29 09:45:03 热度:37.1℃ 作者:网络
乳腺癌是女性最常见的恶性肿瘤,2020年全球乳腺癌新发病例约230万,首次超越肺癌成为排名第一的高发癌症类型[1]。骨骼(尤其是中轴骨)是乳腺癌最易发生转移的部位[2]。约50%的晚期乳腺癌患者存在骨转移,约70%的乳腺癌死亡患者被证实存在骨转移病灶[3]。
根据美国癌症协会(ACS)的统计数据,乳腺癌患者5年生存率为91%,10年生存率为84%[4],然而具有骨转移的乳腺癌患者生存期明显缩短,仅存在骨转移的乳腺癌患者3年生存率为50.5%,中位生存期为36个月(95% CI:34.74~37.27个月)[5]。同时,因骨转移导致病理性骨溶解、脊柱压迫、病理性骨折和高钙血症等骨相关事件(SREs),严重影响患者的生活质量[6],且间接缩短其预期寿命[7]。
研究表明,患者从诊断为骨转移至首次出现SREs的中位时间可短至1.8个月,SREs的发生率在诊断骨转移后的12个月内逐步升高[8]。骨转移的发生可能由多种机制、多种分子共同参与,打破了正常骨微环境中骨形成与骨吸收的动态平衡。
深入研究乳腺癌骨转移的发生机制,寻找可靠的诊断手段,进而实施早期有效的治疗具有重要意义。本文阐述了乳腺癌骨转移的分子机制、诊断及治疗最新进展,旨在为乳腺癌骨转移患者的诊治提供参考,达到早诊断、早治疗的目的。
乳腺癌骨转移机制研究进展
1.1 基本原理
目前,实体恶性肿瘤骨转移的发生机制主要有三种学说,即1889年Paget提出的“种子—土壤”学说[9],以及近年来出现的“肿瘤干细胞”学说[10]和“克隆进展”学说[11]。
总体而言,恶性肿瘤发生远处转移涉及以下几个连续步骤:肿瘤细胞局部侵袭以逃离原发肿瘤周围组织,然后侵入血液或淋巴管作为循环肿瘤细胞(CTCs)在循环系统存活,而后从循环系统逃逸、外渗,作为播散肿瘤细胞(DTCs)适应微环境,同时部分DTCs可能先处于休眠状态,最终DTCs转化为转移起始细胞(MICs)形成转移灶[12-13]。值得一提的是,乳腺癌骨转移灶内高钙、低pH值及低氧的微环境有利于DTCs定植,进而促进骨转移的形成与发展[14]。
1.2 分子机制
在乳腺癌骨转移方面,近年来研究表明乳腺癌骨转移由多种机制、多种分子参与,其过程极其复杂且精细。在乳腺癌患者中,乳腺癌细胞、成骨细胞、破骨细胞和骨基质之间的相互作用最终导致了骨转移。骨转移通常分为溶骨性、成骨性和混合性转移。乳腺癌细胞入侵骨骼可使骨重塑失衡进而出现病理性骨丢失(溶骨性病变)和病理性骨形成(成骨性病变),其中溶骨性病变占主导地位。
溶骨性骨转移作为乳腺癌骨转移的主要类型,目前被广泛接受的分子机制为:转移性乳腺癌细胞通过产生各种蛋白质和细胞因子,进而刺激成骨细胞启动一种“恶性循环”,从而导致溶骨性病变和肿瘤进展。这种“恶性循环”大致可概括为4个关键步骤(图1)[15]:
图1 乳腺癌骨转移的经典分子机制——“恶性循环”
IL:白细胞介素;PTHrP:甲状旁腺激素相关肽;RANKL:核因子-κB受体活化因子配体;RANK:核因子-κB受体活化因子;TNF:肿瘤坏死因子;PGE2:前列腺素E2;M-CSF:巨噬细胞集落刺激因子;TGF-β:转化生长因子β;FGFs:纤维母细胞生长因子;IGFs:胰岛素样生长因子;BMPs:骨形成蛋白;PDGFs:血小板源性生长因子;OPG:骨保护素
(1)乳腺癌细胞分泌大量促进成骨细胞分化的因子;
(2)核因子-κB受体活化因子配体(RANKL)与破骨细胞前体表面的核因子-κB受体活化因子(RANK)结合,促进破骨细胞形成;
(3)破骨细胞介导的骨吸收可使骨细胞外基质中存储的多种重要生长因子释放至骨微环境中
(4)被释放的生长因子能够促进癌细胞的增殖以及甲状旁腺激素相关肽(PTHrP)的分泌。
除上述相对完整且成熟的分子机制外,近年来依旧不断涌现出与乳腺癌骨转移相关的新分子机制。研究发现,自噬启动蛋白1(ULK1)缺乏可导致乳腺癌细胞在缺氧条件下出现侵袭性表型,促进破骨细胞的分化和成熟,并增加溶骨性骨转移,同时发现ULK1与p-MAPK1/3表达水平之间存在明显负相关,该研究为乳腺癌骨转移治疗提供了新方向[16]。
序列相似家族20成员C(FAM20C)是一种可产生大多数分泌型磷蛋白并调节生物矿化的激酶。研究表明,乳腺癌细胞中的FAM20C能够促进破骨细胞生成和骨转移,其功能与骨髓源性FAM20C相反[17]。
着丝粒蛋白F(CENPF)通过激活PI3K-AKT-mTORC1信号通路调节PTHrP的分泌,从而促进破骨细胞的增殖及骨转移的形成[18]。肿瘤细胞能够分泌刺激血管生成的结缔组织生长因子(CTGF),进而促进其定植[19-20]。
肿瘤细胞还可诱导硬化蛋白和其他成骨信号抑制剂,如Dickkopf-1(DKK-1),通过抑制Wnt信号转导进而抑制骨质破坏后新生骨的形成,促进肿瘤进展[15]。研究表明,DKK-1在三阴性乳腺癌中具有预后价值,其阴性表达与无复发生存期(RFS)的改善显著相关[21]。
有研究揭示了雌激素受体(ER)阳性乳腺癌患者易发生骨转移的机制之一:此类患者外源性miR-19a和整合素结合唾液蛋白(IBSP)的表达显著上调,而IBSP能够吸引破骨细胞,协助将外源性miR-19a输送至破骨细胞以诱导其生成[22]。值得注意的是,上述分子机制的明确为临床上乳腺癌骨转移的治疗提供了研究思路。
2 乳腺癌骨转移常用诊断方法新进展
早期诊断骨转移对于提高乳腺癌患者生存质量、延长生存期具有重要意义。目前临床上具有多种影像学检查方法可诊断和评估乳腺癌骨转移情况,包括X线、放射性核素骨显像、CT、MRI、正电子发射计算机体层显像(PET/CT)等。近年来,肿瘤标志物、骨代谢标志物等生物标志物在恶性肿瘤远处转移的预测和诊断中也发挥重要作用。
2.1 影像学诊断
2.1.1 放射性核素骨显像
99mTc标记的放射性核素骨显像是目前最常见的乳腺癌骨转移影像学诊断方法,相较于CT或MRI,能够更早发现乳腺癌骨转移病变[23]。由于放射性核素骨显像为价格经济的全身性检查,而CT和MRI仅为局部检查,其更适合对转移情况不明的乳腺癌患者进行初筛检查,以及对明确有骨转移的乳腺癌患者进行定期复查。
近年来,放射性核素骨显像技术已从仅提供平面、结构、定性信息发展至提供断层、代谢、定量信息。单光子发射计算机断层成像(SPECT)骨定量分析引入标准化摄取值(SUV)作为定量参数,SUV值代表病灶代谢水平。研究证实,在前列腺癌骨转移患者中,SUV值可作为判断骨转移灶活性的生物标志物[24]。
此外,基于人工神经网络的系统具有标准统一、速度快、误差小、准确度高的特点,被积极应用于设计骨扫描图像处理系统。由四川大学华西医院及机器智能实验室联合研发的基于深度神经网络的人工智能模型显示出较高的诊断性能,乳腺癌患者的受试者工作特征曲线下面积为0.988[25]。
2.1.2 PET/CT
PET/CT可同时评价目标区域的形态学和代谢功能,有效区分良、恶性病灶。18F-FDG是PET/CT成像技术中最常用的示踪剂,与放射性核素骨扫描相比,18F-FDG PET/CT具有更高的骨转移病灶检出率[26]。因此,近期的一项回顾性研究推荐使用18F-FDG PET/CT作为新诊断为转移性乳腺癌患者的骨转移病灶评估工具[27]。
除18F-FDG外,18F-NaF也可作为PET/CT检查的示踪剂。18F-NaF PET/CT的敏感性和准确性高于18F-FDG PET/CT,但其特异性不如18F-FDG PET/CT[28]。
2.1.3 MRI
MRI具有无创、无辐射、时间及空间分辨率高等特点,能够检测出微小病变。MRI对于骨转移病灶检出的敏感性高于放射性核素骨显像,因病灶处转移沉积物引起的MRI信号升高早于放射性核素骨显像中病理性骨沉积所致的浓聚异常[29]。
除常规序列外,扩散加权成像(DWI)、磁共振全身弥散成像(WB-DWI)、动态对比增强MRI等特殊序列也可从多方面对病灶进行评估。但整体而言,近些年来MRI技术在乳腺癌骨转移诊断方面的研究相对较少。
2.1.4 其他影像学诊断方法
除上述已成熟应用于临床的影像学诊断技术外,现已证实肿瘤相关巨噬细胞(TAM)的高密度与乳腺癌预后不良相关,涉及TAM支持肿瘤血管生成、肿瘤细胞外基质重塑侵袭、免疫逃逸、免疫抑制白细胞浸润和乳腺癌干细胞激活等机制[30]。这为寻找新的骨转移诊断方法提供了思路,可通过检测患者是否存在大量TAM浸润以判断其肿瘤侵袭性,进而预判其是否可能存在转移。
超微超顺磁氧化铁(USPIO)可作为TAM的MR成像选择性显像剂[31],其原理为静脉注射USPIO后,其缓慢渗出肿瘤血管,并在肿瘤周围间隙积聚,而后被TAM吞噬[32]。
该方法具有非侵袭性优点,但USPIO对肿瘤本身的进展有无促进作用以及对人体是否致敏仍需进一步研究探索。近期有学者发现,以全氟化碳(PFCs)纳米乳作为显像剂,基于19F的细胞示踪方法能够更好地检测TAM的密度[33]。
2.2 生物标志物
2.2.1 肿瘤标志物
血清CA153是一种对乳腺癌特异性较强的肿瘤标志物,在乳腺癌诊断及预后评估中具有重要意义。在乳腺癌骨转移方面,我国学者研究发现血清CA153可提前4年检出乳腺癌肿瘤细胞的复发与转移,特别是对于影像学检查难以确诊的隐匿性转移[34]。
然而,近年来一项针对1690例乳腺癌患者的回顾性分析发现,血清CA153、癌胚抗原水平在骨转移组与无骨转移组间差异无统计学意义[35]。但亦有研究发现,当血清CA153≥21.76 U/mL时,骨转移与其水平存在相关性[36]。因此,血清CA153对于诊断乳腺癌骨转移具有一定的价值,但其敏感性及特异性还有待研究进一步证实。
2.2.2 骨代谢标志物
骨代谢标志物可反映骨转移过程中骨吸收和骨形成的速度,提示骨破坏和修复的程度。抗酒石酸酸性磷酸酶(TRACP)(尤其是TRACP 5b)可反映骨吸收状态和破骨细胞活性,有助于判断恶性肿瘤是否出现骨转移。
骨特异性碱性磷酸酶(BALP)是碱性磷酸酶(ALP)6种同工酶之一,血清总ALP和BALP均是评价骨形成和骨转换的指标,BALP是检测转移性乳腺癌和前列腺癌骨形成的最常用标志物。
有研究将血清TRACP 5b和血清总ALP在乳腺癌骨转移诊断方面的作用与99mTc-MDP全身骨显像进行比较,结果发现血清TRACP 5b和血清总ALP在出现广泛骨转移(骨转移灶≥4处)时显著升高[37]。
此外,包括Ⅰ型胶原α1 羧基末端肽(CTX)、Ⅰ型胶原羧基末端(PICP)、Ⅰ型胶原N末端肽(NTX)以及Ⅰ型胶原N末端肽(PINP)在内的骨代谢标志物也被发现具有诊断意义[38-39]。
3 乳腺癌骨转移治疗新进展
乳腺癌患者发生骨转移后,SREs严重影响其生活质量,且随之可能出现其他内脏转移,从而缩短患者总生存期,因此抗骨转移治疗非常必要。
目前,临床上已有许多治疗方法可供选择,乳腺癌骨转移患者的治疗仍以个体化综合治疗为主,骨改良药物配合全身治疗,联合手术治疗、放疗等局部治疗可为患者带来最优生存质量及最大生存获益。
除骨改良药物外,全身治疗主要取决于乳腺癌的分子分型,针对不同分型的乳腺癌,指南推荐的治疗方案不同。
3.1 骨改良药物
3.1.1 双膦酸盐及其衍生药物
骨溶解是造成骨转移后骨痛的主要原因。双膦酸盐能够抑制破骨细胞活性,从而有效降低骨痛,减少SREs的发生[40],在乳腺癌骨转移治疗中发挥重要作用。现已有三代双膦酸盐药物问世,与第一代氯膦酸二钠及第二代帕米膦酸二钠等药物相比,第三代双膦酸盐药物为治疗首选,第三代药物包括唑来膦酸和伊班膦酸,临床输注时间更短、效果更好。
临床试验研究表明,双膦酸盐既能抑制乳腺癌骨转移,又对DTCs具有杀伤作用[41]。此外,双膦酸盐也是肿瘤诱导高钙血症的治疗药物[42]。近年来研究发现,包裹唑来膦酸的纳米金颗粒联合光热疗法(PTT)可有效抑制癌细胞生长,甚至诱导其凋亡,通过改善骨微环境进而有效缓解骨痛[43]。
3.1.2 地诺单抗
地诺单抗作为新型骨改良药物可通过靶向RANKL抑制破骨细胞介导的骨吸收,是一种特异性单克隆抗体。
2010年11月,地诺单抗获美国食品药品监督管理局(FDA)批准用于预防包括乳腺癌在内的实体瘤患者的SREs[44]。2020年11月,获我国国家药品监督管理局批准用于预防实体瘤骨转移和多发性骨髓瘤引起的SREs。
地诺单抗除应用于乳腺癌骨转移患者外,还可作为新辅助治疗药物应用于早期乳腺癌患者,D-BEYOND临床试验研究发现,地诺单抗作为新辅助治疗药物可使肿瘤浸润淋巴细胞(TIL)水平显著增加,提示其可解除由于RANKL/RANK过表达引起的免疫抑制,从而发挥抗肿瘤作用[45]。
相较于双膦酸盐,地诺单抗具有独特优势。一项随机双盲Ⅲ期临床试验研究显示,地诺单抗可预防患者疼痛加重,减少止痛药的使用频率[46]。地诺单抗在降低SREs发生风险、延迟SREs发生时间方面也更为有效[40]。
德国一项纳入1130例实体瘤骨转移患者的真实世界研究显示,采用地诺单抗治疗的患者依从性好、换药率更低、用药时间更长[47]。在临床应用方面,需根据患者的肾功能评估双膦酸盐的药量及输注速度,而地诺单抗对肾功能的要求低,更适合用于肌酐清除率低、肾功能不全或正应用肾毒性药物治疗的患者[48]。
此外,地诺单抗采用皮下注射给药,相较于双膦酸盐更方便。目前,现有研究尚未证实地诺单抗与双膦酸盐能够显著改善乳腺癌骨转移患者的总生存期[40]。在预防性应用地诺单抗降低乳腺癌骨转移风险方面,两项大型队列、安慰剂对照试验(ABCSG-18[49]和D-CARE[50])得出了截然相反的结论,因此其预防性应用是否具有临床意义仍需进一步研究证实。
3.2 靶向治疗
近年来,针对组织蛋白酶K、c-Src、Dickkopf-1、内皮素-1等多种分子的临床试验研究,为乳腺癌骨转移患者提供了新型靶向治疗方法,但目前尚未批准应用于临床[51]。
作为骨吸收的关键因素之一,组织蛋白酶K是由破骨细胞产生的溶酶体蛋白酶,在转移灶的癌细胞中过表达。组织蛋白酶K抑制剂,如Odanacatib(MK-0822)通过与NF-κB通路相互作用抑制骨吸收细胞因子和生长因子,从而阻止溶骨性骨转移[52]。
c-Src为原癌基因,一般在人类肿瘤细胞中过表达,c-Src可被RANKL与RANK之间的相互作用所激活,继而对破骨细胞产生影响[53]。目前,针对c-Src的靶向治疗药物(包括达沙替尼、萨拉卡替尼和博沙替尼)正在开展临床试验。在动物实验中,萨拉卡替尼被证实可有效缓解骨痛[54]。在已公开数据的Ⅱ期临床试验中,达沙替尼和唑来膦酸联合制剂可延长乳腺癌骨转移患者的生存期[55],但亦有存在不同结论的类似研究[56]。
除此之外,MAP2K/MEK-MAPK1/3通路抑制剂曲美替尼被证实可通过上调ULK1水平进而减少溶骨性骨转移[16];绿原酸(chlorogenic acid)作为潜在的IBSP受体,可抑制雌激素受体阳性乳腺癌患者的骨转移[22];硬化蛋白与DKK-1具有相同的机制,其抗体在动物实验中被证实能够减少乳腺癌骨转移和肌肉无力症状[57];Dorsomorphin作为一种新型的DKK-1抑制剂,其在乳腺癌治疗方面的作用仍需进一步探索[58]。
3.3 放射治疗
体外照射治疗(EBRT)和立体定向放疗(SBRT)属于体外放射治疗。研究表明,相较于EBRT,SBRT能够精准定位转移灶,对正常组织的伤害更小,可更快速、更持久地缓解骨痛[59]。SBRT的劣势在于局部辐射剂量较高,接受治疗后患者出现病理性骨折的概率较高[60]。
放射性核素内照射治疗骨转移是通过静脉注射强亲骨性、可发射β射线的放射性同位素,以达到缓解骨痛和杀死肿瘤细胞的目的。目前,放射性同位素153Sm、89Sr、186Re、188Re、32P等已应用于临床治疗,但将233Ra应用于乳腺癌骨转移的研究多数仍处于临床前和临床试验阶段。
在小鼠模型中,233RaCl2防止了肿瘤诱导的恶病质[实验组小鼠(0/14)比对照组小鼠(7/14)],并减少了56%的骨溶解和43%的肿瘤生长[61]。
1例患有激素难治性和化疗难治性转移性乳腺癌的患者在接受了223Ra(FDA允许的前列腺癌223Ra治疗剂量)治疗后,骨痛得到改善,肿瘤标志物相应下降,18F-FDG PET/CT和18F-NaF PET/CT检查中SUV值也逐步下降,提示美国FDA批准的用于治疗前列腺癌骨转移的223Ra剂量可安全用于激素难治性乳腺癌骨转移患者[62]。
近期一项纳入36例患者的单中心Ⅱ期临床试验研究指出,223Ra联合内分泌治疗对存在明确骨转移的雌激素受体阳性乳腺癌患者有效,且治疗相关不良事件可耐受[63]。
4 小结
随着分子机制研究的不断深入,近年来针对乳腺癌骨转移的诊断和治疗不断取得新进展,为乳腺癌患者的治疗带来了希望。诊断方面,全身骨扫描仍是乳腺癌骨转移患者首选的检查手段,但仍需致力于探索侵袭性更低、敏感性更高的检查方法。
相信随着医学影像技术的发展,得益于人工智能产业的不断强大,联合开发的骨显像人工智能辅助诊断系统将有助于合理分配有限的医疗人力资源,其良好的诊断准确率和效率使其具有乐观的临床应用前景。肿瘤标志物、骨代谢标志物及影像学联合检测可进一步提高乳腺癌骨转移的诊断能力。
目前,针对乳腺癌骨转移的治疗主要在于缓解骨痛、减少SREs的发生、延迟发生SREs的时间和防止病理性骨折。预防乳腺癌患者骨转移、延缓转移灶进展甚至延长患者生存期的治疗方法仍需进一步探索研究。希望正处于临床试验阶段的针对乳腺癌骨转移的靶向治疗药物能够取得突破性进展,为乳腺癌骨转移患者带来福音。
参考文献
[1]Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71:209-249.
[2]Ording AG, Heide-Jorgensen U, Christiansen CF, et al. Site of metastasis and breast cancer mortality: a Danish nationwide registry-based cohort study[J]. Clin Exp Metastasis, 2017, 34:93-101.
[3]Awolaran O, Brooks SA, Lavender V. Breast cancer osteomimicry and its role in bone specific metastasis; an integrative, systematic review of preclinical evidence[J]. Breast, 2016, 30:156-171.
[4]DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69:438-451.
[5]Wang R, Zhu Y, Liu X, et al. The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer[J]. BMC Cancer, 2019, 19:1091.
[6]Shinoda Y, Sawada R, Yoshikawa F, et al. Factors related to the quality of life in patients with bone metastases[J]. Clin Exp Metastasis, 2019, 36:441-448.
[7]Yong M, Jensen AÖ, Jacobsen JB, et al. Survival in breast cancer patients with bone metastases and skeletal-related events: a population-based cohort study in Denmark (1999—2007)[J]. Breast Cancer Res Treat, 2011, 129:495-503.
[8]Cleeland C, von Moos R, Walker MS, et al. Burden of symptoms associated with development of metastatic bone disease in patients with breast cancer[J]. Support Care Cancer, 2016, 24:3557-3565.
[9]Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8:98-101.
[10]Pece S, Tosoni D, Confalonieri S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content[J]. Cell, 2010, 140:62-73.
[11]Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells[J]. Nature, 2016, 529:298-306.
[12]Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis[J]. Science, 2011, 331:1559-1564.
[13]Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape[J]. Nat Rev Clin Oncol, 2017, 14:155-167.
[14]Walker ND, Patel J, Munoz JL, et al. The bone marrow niche in support of breast cancer dormancy[J]. Cancer Lett, 2016, 380:263-271.
[15]Wu X, Li F, Dang L, et al. RANKL/RANK System-Based Mechanism for Breast Cancer Bone Metastasis and Related Therapeutic Strategies[J]. Front Cell Dev Biol, 2020, 8:76.
[16]Deng R, Zhang HL, Huang JH, et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis[J]. Autophagy, 2021, 17:3011-3029.
[17]Zuo H, Yang D, Wan Y. Fam20C Regulates Bone Resorption and Breast Cancer Bone Metastasis through Osteopontin and BMP4[J]. Cancer Res, 2021, 81:5242-5254.
[18]Sun J, Huang J, Lan J, et al. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer[J]. Cancer Cell Int, 2019, 19:264.
[19]Pang X, Gong K, Zhang X, et al. Osteopontin as a multifaceted driver of bone metastasis and drug resistance[J]. Pharmacol Res, 2019, 144:235-244.
[20]Hofbauer LC, Bozec A, Rauner M, et al. Novel approaches to target the microenvironment of bone metastasis[J]. Nat Rev Clin Oncol, 2021, 18:488-505.
[21]Xu WH, Liu ZB, Yang C, et al. Expression of dickkopf-1 and beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype[J]. PLoS One, 2012, 7:e37624.
[22]Wu K, Feng J, Lyu F, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer[J]. Nat Commun, 2021, 12:5196.
[23]翟士军, 张玉娜, 米宝明, 等. SPECT/CT融合骨显像对乳腺癌骨转移的诊断价值[J].中国辐射卫生,2016, 25:746-748,752.
[24]Kuji I, Yamane T, Seto A, et al. Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer[J]. Eur J Hybrid Imaging, 2017, 1:2.
[25]Zhao Z, Pi Y, Jiang L, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis[J]. Sci Rep, 2020, 10:17046.
[26]Paydary K, Seraj SM, Zadeh MZ, et al. The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer[J]. Mol Imaging Biol, 2019, 21:1-10.
[27]van Es SC, Velleman T, Elias SG, et al. Assessment of Bone Lesions with (18)F-FDG PET Compared with (99m)Tc Bone Scintigraphy Leads to Clinically Relevant Differences in Metastatic Breast Cancer Management[J]. J Nucl Med, 2021, 62:177-183.
[28]Damle NA, Bal C, Bandopadhyaya GP, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan[J].Jpn J Radiol, 2013,31:262-269.
[29]Choi J, Raghavan M. Diagnostic imaging and image-guided therapy of skeletal metastases[J]. Cancer Control, 2012, 19:102-112.
[30]Choi J, Gyamfi J, Jang H, et al. The role of tumor-associated macrophage in breast cancer biology[J]. Histol Histopathol, 2018, 33:133-145.
[31]Daldrup-Link HE, Golovko D, Ruffell B, et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles[J]. Clin Cancer Res, 2011, 17:5695-5704.
[32]Shih YY, Hsu YH, Duong TQ, et al. Longitudinal study of tumor-associated macrophages during tumor expansion using MRI[J]. NMR Biomed, 2011, 24:1353-1360.
[33]Makela AV, Gaudet JM, Foster PJ. Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking[J]. Sci Rep, 2017, 7:42109.
[34]杨志, 杨贵生, 李宁, 等. 全身骨显像联合CA15-3和CEA检测对乳腺癌骨转移的诊断价值[J]. 中华肿瘤防治杂志,2016,23:1229-1123.
[35]Yazdani A, Dorri S, Atashi A, et al. Bone Metastasis Prognostic Factors in Breast Cancer[J]. Breast Cancer (Auckl), 2019, 13:1178223419830978.
[36]Fakhari A, Gharepapagh E, Dabiri S, et al. Correlation of cancer antigen 15-3 (CA15-3) serum level and bony metastases in breast cancer patients[J]. Med J Islam Repub Iran, 2019, 33:142.
[37]Sarvari BK, Sankara Mahadev D, Rupa S, et al. Detection of Bone Metastases in Breast Cancer (BC) Patients by Serum Tartrate-Resistant Acid Phosphatase 5b (TRACP 5b), a Bone Resorption Marker and Serum Alkaline Phosphatase (ALP), a Bone Formation Marker, in Lieu of Whole Body Skeletal Scintigraphy with Technetium99m MDP[J]. Indian J Clin Biochem, 2015, 30:66-71.
[38]吴春娇,马丽霞,朱晶,等. 联合检测乳腺癌骨转移患者中尿Ⅰ型胶原氨基末端肽和Ⅰ型胶原羧基末端肽的临床意义[J]. 中华肿瘤杂志,2016,38:693-697.
[39]Zuo CT, Yin DC, Fan HX, et al. Study on diagnostic value of P1NP and beta-CTX in bone metastasis of patients with breast cancer and the correlation between them[J]. Eur Rev Med Pharmacol Sci, 2019, 23:5277-5284.
[40]Wong MHF, Stockler MR, Pavlakis N.Bisphosphonates and other bone agents for breast cancer[J]. Cochrane Database Syst Rev,2012(2):CD003474.
[41]Aft R, Naughton M, Trinkaus K, et al.Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial[J]. Lancet Oncol, 2010, 11:421-428.
[42]Zagzag J, Hu MI, Fisher SB, et al. Hypercalcemia and cancer: Differential diagnosis and treatment[J]. CA Cancer J Clin, 2018, 68:377-386.
[43]Sun W, Ge K, Jin Y, et al. Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis[J]. ACS Nano, 2019, 13:7556-7567.
[44]Iranikhah M, Wilborn TW, Wensel TM, et al. Denosumab for the Prevention of Skeletal-Related Events in Patients with Bone Metastasis from Solid Tumor[J]. Pharmacotherapy, 2012, 32:274-284.
[45]Gómez-Aleza C, Nguyen B, Yoldi G, et al. Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells[J]. Nat Commun, 2020, 11:6335.
[46]Vadhan-Raj S, von Moos R, Fallowfield LJ, et al. Clinical benefit in patients with metastatic bone disease: results of a phase 3 study of denosumab versus zoledronic acid[J]. Ann Oncol, 2012, 23:3045-3051.
[47]Diel I, Ansorge S, Hohmann D, et al. Real-world use of denosumab and bisphosphonates in patients with solid tumours and bone metastases in Germany[J]. Support Care Cancer, 2020, 28:5223-5233.
[48]Barton MK. Denosumab an option for patients with bone metastasis from breast cancer[J]. Ca Cancer J Clin, 2011, 61:135-136.
[49]Gnant M, Pfeiler G, Steger GG, et al. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2019, 20:339-351.
[50]Coleman R, Finkelstein DM, Barrios C, et al. Adjuvant denosumab in early breast cancer (D-CARE): an interna-tional, multicentre, randomised, controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21:60-72.
[51]Oruç Z, Kaplan MA, Arslan Ç. An update on the currently available and future chemotherapy for treating bone metastases in breast cancer patients[J]. Expert Opin Pharmacother, 2018, 19:1305-1316.
[52]Vashum Y, Kottaiswamy A, Bupesh G, et al. Inhibitory Effects of Cathepsin K Inhibitor (ODN-MK-0822) on the Paracrine Pro-Osteoclast Factors of Breast Cancer Cells[J]. Curr Mol Pharmacol, 2021, 14:1134-1145.
[53]Clézardin P. Therapeutic targets for bone metastases in breast cancer[J]. Breast Cancer Res, 2011, 13:207.
[54]De Felice M, Lambert D, Holen I, et al. Effects of Src-kinase inhibition in cancer-induced bone pain [J]. Mol Pain, 2016, 12:1744806916643725.
[55]Paul D, Vukelja SJ, Ann Holmes F, et al. Randomized phase-Ⅱ evaluation of letrozole plus dasatinib in hormone receptor positive metastatic breast cancer patients[J]. NPJ Breast Cancer, 2019, 5:36.
[56]Schott AF, Barlow WE, Van Poznak CH, et al. Phase Ⅱ studies of two different schedules of dasatinib in bone metastasis predominant metastatic breast cancer: SWOG S0622[J]. Breast Cancer Res Treat, 2016, 159:87-95.
[57]Hesse E, Schröder S, Brandt D, et al. Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness[J]. JCI Insight, 2019, 5:e125543.
[58]Jaschke N, Kleymann A, Hofbauer LC, et al. Dorsomorphin: A novel inhibitor of Dickkopf-1 in breast cancer[J]. Biochem Biophys Res Commun, 2020, 524:360-365.
[59]Tanja S, Vivek V, Robert F, et al. Randomized phase Ⅱ trial evaluating pain response in patients with spinal metastases following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy[J]. Radiother Oncol, 2018, 128:274-282.
[60]Sprave T, Verma V, Förster R, et al. Local response and pathologic fractures following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy for spinal metastases-a randomized controlled trial[J]. BMC Cancer, 2018, 18:859.
[61]Suominen MI, Rissanen JP, Kakonen R, et al. Survival benefit with radium-223 dichloride in a mouse model of breast cancer bone metastasis[J]. J Natl Cancer Inst, 2013, 105:908-916.
[62]Takalkar A, Adams S, Subbiah V. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone[J]. Exp Hematol Oncol, 2014, 3:23.
[63]Ueno NT, Tahara RK, Fujii T, et al. Phase Ⅱ study of Radium-223 dichloride combined with hormonal therapy for hormone receptor-positive, bone-dominant metastatic breast cancer[J]. Cancer Med, 2020, 9:1025-1032.